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AN ANALYSTS OF THE FLAPWISE BENDING FREQUENCIES
AND MODE SHAPES OF ROTOR BLADES HAVING TWO FLAPPING HINGES
TO REDUCE VIBRATION LEVELS

By George W. Brooks and H. Wayne Leonard
SUMMARY

This paper presents the analysis of the flapwise natural bending
frequencies and mode shapes of rotor blades with two flapping hinges
located at arbitrary blade radii. The equations of motion are derived
for a blade of variable mass and stiffness distribution. Solutions to
the equations (natural frequencies and mode shapes) are presented for
a typical blade of constant cross sectlion having a wide range of hinge
locations.

The results show that the natural frequencies of the blades can be
changed appreciably by varying the locations of the blade hinges, and
that with two properly located flapping hinges, blade designs are possi-
ble which eliminate or greatly reduce conditions of resonance between the
blade natural frequencies and the frequencies of the harmonic air loads.
The results also show that ratios of natural frequency to rotor speed
below a value of 6.0 are essentially constant for variations in rotor
speed consistent with helicopter and VIOL applications.

INTRODUCTION

Excessive vibrations in rotor craft have been cited as a major prob-
lem for many years. Currently, many operational helicopters have vibra-
tion levels which are too high for sustained fatigue-free operation, and
others are penalized by having to carry the excess weight and mechanical
complexity of tuned vibration dampers to hold the vibrations down to
acceptable levels.

Although rotor craft are subject to several types of self-excited
vibrations, the vibrations of primary concern are the forced vibrations
which arise from the dynamic response of the structural components to
the aerodynamic inputs. These inputs arise as a result of the movement



of the rotating rotor through the airstream and are transmitted to the

structure proper through the blades.

ther consideration be given to the nature and magnitude of the aero-
dynamic inputs and to the selection of blade designs having structural

parameters which minimize adverse dynamic response.

This paper deals

with the latter problem, in that it presents a general method for the
variation of the flapwise natural frequencies and mode shapes of the

blades by the inclusion of multiple flapping hinges.

An analysis is

presented which treats both the rigid and elastic blade with two flap-

ping hinges wherein the radial locations of the hinges and the spanwise
distributions of mass and stiffness are completely general.

The equa-

tions of motion are derived, and the natural frequencies and mode
shapes are calculated for a blade of constant cross section for a wide
range of flapping hinge locations and rotor speeds.

SYMBOLS

ratio of spanwise location of ith flapping hinge to blade
radius, measured along undeformed blade

generalized coordinate for elastic bending of ith blade seg-
ment, in.

blade flapwise bending stiffness distribution on ith blade

segment, lb-in.2

first normal mode shape of ith blade segment when treated as

s nonrotating beam with simply supported or hinged-hinged
ends

integer used to denote blade segment
integer used as an index in summations

mass per unit length of ith blade segment, lb-sec2/in.2

value of my at inboard end of ith blade segment, lb-sece/in.

Thus, it seems expedient that fur-
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an integer used to denote mode number
number of blades

coordinate of blade element measured radially from center of
rotor, in.

blade radius, in.
time, sec
total kinetic energy, 1b-in.

contribution of ith blade segment to total kinetic energy,
1b-in.

elastic deformation of ith blade segment in z-direction, in.

total potential energy, lb-in.

contribution of ith blade segment to total potential energy,
1b-in.

Cartesian coordinates, in.

total blade displacement in z-direction, normalized to maxi-
mum value

incremental change

coordinate of blade element in ith blade segment, measured
from its inboard end, in.

first natural frequency of nonrotating, hinged-hinged beam
(corresponds to mode shape fji), radians/sec

generalized coordinate or flepping angle of ith blade segment
with respect to (i - 1)th segment

frequency of oscillation, radians/sec

nth natural frequency of rotating blade, radians/sec

rotor angular velocity, radians/sec



Subscripts:
E elastic
R rigid

Dots over symbols denote differentiation with respect to time;
primes denote differentiation with respect to r.

ANALYSTS

Derivation of the Equations of Motion

The coordinate system for the two-hinge elastic-segment blade is
shown in figure 1. The x,y,z coordinate system is fixed in space and
the position of a blade element of segment 1 (1 = 0, 1, or 2) is
given by

Xy = (r - Ari)cos Ot (1a)
yg = (r - 4ry)sin @t (1b)
zg = 0] h

S (1e)

1
z4 E:(r - aR)ey + uy(r,t) (1 =1,2)

J=l )

where r 1is the radial location of a blade element measured along the
undeformed blade, @y 1s the flapping angle between the ith blade seg-

ment and the nearest inboard segment, Ar; 1s the distance the ith ele-

ment moves toward the center of the rotor due to rotation and translation
of the element as the blade deforms, and uwy 1s the elastic deformation

of the ith blade segment in the z-direction. The inward movements of the
elements of the respective blade segments are then given for small dis-
placements by

Arg =0 (2a)

r duq (r,t) 2
ary =2 k/p (@1 + ——}5;__7> dr (2p)
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asR 3 2 2
1 ul(r,t) r Bug(r,t)
A"fsz(“’l*—a?— Frg e ) (@)

The deformation ui(r,t) can be represented by a summation of prod-

ucts of functions of time bij(t) and deflection shapes fij(r)’ that
P

is, ui(r,t) = E: biJ(t)fij(r). For purposes of this investigation,
J=1

only one term in the summation was used and upon dropping the second

subscript, fi(r) was chosen as the first normal mode shape of a non-

rotating beam identical to the ith blade segment simply supported at
its ends (hereinafter referred to as hinged-hinged). The quantity
bi(t) is then a generalized coordinate. Thus

uy(r,t) = by(t)fy(r) = b3ty (3)
and
du,(r,t) ar, (r)

The positions of the elements of the respective blade segments in
the coor?inate system are given by substitution of the proper expressions
duy(r,t)

or

into equations (1). For example,

for into equations (2) and the resulting expressions for Ari

a
Xy = (r - Are)cos 2t = |r - % L/ﬁ 2R(¢l + blfl')edr
alR

r
- % Jf (91 + ¥ + b2f2t)2dr cos Qt (acR S r SR)
asR

The kinetic and potential energies of each blade segment may now
be calculated and summed to obtain the total kinetic energy T, that is,

T=Tp+ T +Tp (5a)



R
fo 03 + 3% + 2%)ar (5b)

&R o 2 2 &R > 2 2
T % k/; mo(xo + Yo + zo)dr + k/ﬁ ml(xl +y; + zl>dr

=]
|
-

a.lR
R 2 .2 .2
+ mol\Xp + yp + zp)dr (5¢)
agR
and the total potential energy V
V=V0+V1+V2 (65-)
2 2
b a R b R
V=0+ ?l f (EI)l(fl") 261‘ + _22_ f (EI)g(fzu) 2dr (6b)
a1R acR

At this point, the straightforward approach would be 1o calculate
the three components of deflection for each blade segment, differentiate
and integrate as indicated in equations (5c¢c) and (6b), and thus obtain
the complete energy expressions. However, a better approach which will
considerably simplify the problem is to apply Lagrange's equation at
this stage, that is, to derive the equations of motion in symbolic form.
Thus for each generalized coordinate represented by qg the following

equation is derived:

afor\ or o
5(%) A i

where gqg denotes any one of the generalized coordinates @;, @p, bj,
or by. Then

AN - m HH
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R dx % 3y y . 329 . 4 fozo
afer) fal . OXo . d{dxg . 90 . af%o0 .3 v s __(5 )dr
at(aq,) " Jo ’“OE‘O 3, O dt@';s) T3 T Y0 dt(ac';s 03, " "0\,

agR . X1 . afoxy N S a}"l . Oz1 . 4 2 .
+f mlE(lgs'f'xla?(E)‘Fyl-a—d—;'f-ylth +Zl-az+zldtaés

&lR
S a2\ . W2, . 4 a&e) . Ozp d_(552>
Xp =+ ¥p === |+ Yo+ Vo —|= )+ 2o = + 22 |~ |ar (8a)
* v/;ER sz(e 344 2 dt(aqs> 2 3q, 2 dt(qu 34, at\oq,

T falR . %y . dy, . d
— = Xg —= + Yo — + 2o —=|dr
o T 1 X0 0 32 0 e

R . OXp, _ Oy, , 9z,
+ L/n my | X + Yo + 2, —|dr (8b)
aqs dq,
and

: 2 2
ov 9 by 8.2R 2 bp R m 2
Eran Y ~/;1R (BD)y (£,") ar + 2 ‘/;.2R (E1),(£,") “ar (8c)

The integrals in equation (8c) are given in terms of the radial
distribution of the blade flexural rigidity EI, and the second deriva-
tives of the flexural deformation f. These integrals may also be
written in terms of the natural frequencies of the nonrotating hinged-
hinged segments having the mass distributions m and the modal deforma-
tions f, that is,

B.2R a2R
f (E1)1(£1") Par = e f - my £, %dr

alR al
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f (EI)p(fp") “ar = ugf mpf5 dr
asR a R

This form is useful in that the potential energy in equation (8c) can
be written in terms of the more readily determined quantities i, Ty,
and m; rather than (EI); and fy". This substitution is used in

the remainder of the report.

The equations of motion for the respective generalized coordinates,
after appropriate differentiations and rearrangement, and with only

linear terms retained are:
r
mzrf dr\dr
aiR

c'p'l [/Q:ER ml(r - alR)zdr + j;ZR me(r - alR)2dr:| + chpl[fazR <mlrfr
dr>dr] + b —fazR m (r - ejR)f; dr]

R
ajR a1R dr>d1‘ * f
+ wz[/;; m2(r - alr)(r - agR)d.r} + Qecpel:fR <m2rfr

asR

asR asR L a R
a r R B R r ,
+ nzbl I;/;liR <mlrj;lR £, d.r>d.r} + ‘f)él}/;eR mg(r - a1R)fp d{l + Q2b2 L\/;eR <m2rL2R £ dr>d{{ =0 (9a)

C'P'l[fa; mp(r - &R)(x - agR)dr:| . ngwl{j;; (WLZR dr)d{l + 85 [j;; mo(r - aeR)zi{i
+ 2%, l;/;; (mer_/;; dr)ﬁ] + ge[/:; ma(r - agR)f, a{l + 92},2[[:; <%rﬁ; 5 dr)d_r] =0 (9b)

91 [faf myfy(r - alR)d-{| + oy 1:fa2R <M1TLIR £, d.r)dr:l + Sl[fazR mlf:f dr:‘

a7 a1R a1R
i aoR r W2 R azR 2

2y | [* (myr : )

+Q lL“/;lR (1 /;11? (£1) d.r'>d1‘+ fazR<m2 /;11’* (fl>drdr}

+ ula_bl \/;BER mlff dr} = (9¢)
L 1

AN =1 M =~
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R o R r
&, f my(r - 8R)fp dr| + %1 f (mgrf £, d.r>dr
anR asR aoR
. s: ] R r
+ O f my(r - agR)fp dr| + 2%, f m2rf f, dr|dr
a R a R aoR
- .
. r R ) [ PR T 2
+ b £5 ar| + 0% f rf £, ) ar)ar
2 aszez 2 a2R<m2 a2R(2) )
R
+ bgp.g f mgfg dr{ =0 (94)
aER

Equations (9) are now written in matrix form. For convenience, the
integrals contained in each square bracket of equations (9) have been
nondimensionalized and expressed in terms of coefficients Aj;y, Bqj,

and so forth.
and (9b) were divided by 9211110R3 and equations (9c) and (9d) were

In order to nondimensionalize the integrals, equations (9a)

divided by QamloRe. It is also assumed that the blade motions are

harmonic.

The resulting equation is
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i <%)2(A11 + Buhy) - (%)2312h2 ) (%)2A15 ) (%)aBluhz 0[]
¥ * fte + Fiohp + B3 + Fpphy " °
- (%)2]312}12 - (%)2}322112 _ (%)232)4)12
° P 0
+ ek + Fiohp + Fryhp
2
- (&) ms - (8) %5 Dl e
0 + Ez3 + Fazh, 0 vyl [0
+ El} ’ .
* (Tl) A3
2
- (2YByn
) (%>2Bl)+h2 - (%)QBauhE (n) 2
0 + le_he b, /R 0
+ Fryhy + Fiuhy Iy
- +(€% mmhi ¥ J \J

Note that the coefficients Ajj;, Bjj;, and so forth of equation (10)

are completely general with respect to the mass and stiffness distribu-
tions and the hinged-hinged mode shapes of the segments.

For example,
some expressions for the coefficients are:

asR
All = -i- i(I‘ - alR)adr
R> Yar Mo
R
1 mo 2
B = — —(r - a.lR) dr
L RO a2R 1112O
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Evaluation of Coefficients for Uniform Segments

If the mass and stiffness distributions of each segment are con-
stant throughout its length, the first natural-mode shapes for elastic
bending of the hinged-hinged segments are given by

N1
f, = f4(r) = sin €t ———onon— 0 < < R{an - & lla
1 1( ) R(a2 ~ 31) ( M1 ( o) 1)) ( )
M2
£, = f(r) = sin ¥t ———— (o< <Rl-a> 11b
2 2( ) R(l _ 32) n2 ( 2) ( )
asR
Then, for example, the integral fyr dr can be expressed as
alR
follows:
a2R R(ae—al)
Jf fir dr = u/\ fl(alR + nl) (alR + nl)dnl

R{a~-a
a;R \jp ( 2 l) sin ———EEE———— dny
0 R(ay - a7)

fR(ae-al)n . mT a
0 17 R(ag - ay) 1

The coefficients of the matrix (eq. (10)) are given by the fol-
lowing expressions:
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]

E&. - 1)2
1

a1

> (a - 1)

2.2 2 2)
aal)(l + a%ay + 88y - 5&31 + 5&1
aal)(} - % aay - 1 aza§ ) a; + g aa%)

2 2

aal)(l + aay - 2&1)

%(1 aa,)’

%(1 ea;)”

%(l aay )

%. al3(a5 - 288+ %)

a—; (a2 - l)
g lsfe ) o)

U3 o
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=1 3 3 2 2.2
Fll 3 (l - aal)(l - E a.l + a,al - E a.al + a al)
1 1 1 2 2)
Flo =3 (1 - aal)(l -es - 588
F13 = O
1 22
Flh == (l - a al)

DISCUSSION OF RESULTS

This section of the report treats both the rigid-segment blade
(bl = by = O) and the flexible-segment blade to determine (a) the varia-

tion of natural frequencies with rotor speed, (b) the variation of the
natural frequencies with hinge locations, (¢c) a comparison of the natural
frequencies of the flexible-segment blade with those of the rigid-segment
blade, and (d) the effect of rotor speed and hinge locations on the nat-
ural mode shapes.

For purposes of illustration, it was assumed in obtaining the cal-
culated results subsequently presented that the mass and stiffness dis-
tributions are uniform throughout the length of the blade outboard of
the inboard flapping hinge, and the values used

_ 2

(ml =m, = 0.6 X 1070 12—522-; (ET); = (EI), = 3.15 x 100 1b-1n.2;
in

and R = 210 in.) are typical of those of a medium-size helicopter.
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Rigid-Segment Blade

The natural frequencies of the rigid-segment blade are obtained by
the vanishing of the determinant of the submatrix formed by eliminating
the third and fourth rows and third and fourth columns of equation (10).
The natural frequencies of the resulting two-degree-of-freedom system
for a blade of uniform cross section are given in table I. The frequency
ratio, obtained by dividing by the rotor speed, is also plotted as a
function of hinge locations in figure 2 where the abscissa 1s the radial

location of the second hinge point.

Calculations are presented for

inboard hinge locations of 4 percent, 10 percent, and 30 percent of the

radius.

One of the significant features of the multihinged rigid-segment
blade is that the natural frequency of a given mode 1s always a constant
multiple of the rotor speed and consequently blade designs are possible
which will eliminate conditions of resonance between the blade natural
frequencies and the frequencies of the harmonic aerodynamic loads as the

rotor speed is varied.

The mode shapes for the rigid-segment blade are obtained by substi-
tution of the natural frequencies or roots presented in table I back
into either of the first two equations of the submatrix and solving for
the ratio wl/we.

This ratio, which is independent of rotor speed, was

calculated for several practical hinge configurations and the results
are presented in the following table:

®n P1

a a — n —

1 2 Q 0
0.0k4 0.40 1.031 1 50.442
.04 4o 3,018 2 - .46k
.10 .50 1.080 1 20.389
.10 .50 3.050 2 -.378
.30 .60 1.279 1 7.067
.30 .60 3,615 2 -.400

The two mode shapes for the configuration where a; = 0.04 and

a, = 0.40 are plotted in figure 3.

Figure 3 shows that the blade segments aline themselves during
vibration in a manner which resembles the flapping and first elastic
bending modes of a conventional rotor.
of the node and antinode for the second mode are directly dependent on
the hinge locations and move toward the tip as ap approaches unity.

However, the radial locations

U~ ot
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Elastic-Segment Blade

If the flexibilities of the various segments of a rotor blade with
two flapping hinges are neglected, the system, as shown in the previous
section, reduces to a two-degree-of-freedom system. Thus, two natural
modes with thelr associated natural frequencies are obtained. If, how-
ever, the segments are considered to be flexible, two primary effects
result. The first effect is that additional degrees of freedom are
obtained, the number of which is equal to twice the number of elastic
modes of deformation assumed for each segment. The coupling of these
additional degrees of freedom with the flapping modes results in higher
natural modes and frequencies of the blade.

A second result is that the natural frequencies of the lower two
modes, which are constituted primarily of flapping of the blade segments
about the hinges, are subject to change. The effect of flexibility of
the segments on the lower frequencies can then be observed for any con-
figuration of hinge locations by comparing the first two natural fre-
quencies of the flexible-segment blade with the respective frequencies
for the rigid-segment blade.

The study made in the present paper treats the case where each
blade segment is permitted one degree of freedom in flexure defined by
the first natural mode of the appropriate hinged-hinged segment. The
four natural frequencies for the blade, as well as the frequency ratios
obtained by dividing by the rotor speed, are presented in table II for
various rotor speeds and hinge locations. The ratios of the natural
frequencies to the rotor speed for the first three modes are plotted
in figures 4. The natural frequencies for the fourth mode are generally
above the values of practical interest in rotor design (see table II)
and are therefore omitted from the figures.

A comparison of the frequency curves presented in figures 4 shows
that the ratio of wl/Q is independent of either rotor speed or the

spanwise location of the outboard hinge but increases as the inboard
hinge is moved outward. In the case of the second mode, a small depend-
ence of wQ/Q on both rotor speed and hinge locations is shown. The

frequency ratio is increased as the rotor speed is reduced and glso as
the second hinge location is moved in either direction from the point
where the outer two segments of the blade are of approximately equal
length. The frequencies of the second mode are also increased as the
inboard hinge is moved toward the blade tip. Figure U4 also shows that
the natural frequencies for the third mode are highly dependent on both
the hinge locations and the rotor speed.

From flight-operations experience, aerodynamic excitations have
been found to occur at integer multiples of the rotor speed, and the
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excitations are more severe when the integer is a lower multiple of the
number of blades. Thus, in order to minimize structural amplifications
due to resonance, it is desirable to choose the hinge locations so that
resonant frequencies are avoided. In consideration of the two-blade

rotor, for example, one should select a value of a; as large as possi-

ble (consistent with rotor moment requirements for stability and control)
: w
to raise the natural frequency of the second mode so that 3 < 7% <k

and to choose a value of a5 such that wB/Q is both as high and as
far removed from integer values as possible.

For helicopter applications and for the blade parameters selected,
Q= 30. Thus, it appears that desirable values for a; and a, for

blades having the chosen values of EI and m would be 0.30 and O.5h,
respectively. For VIOL applications, it may be desirable to vary the
rotor speed substantially during the flight, and in this case it would
be desirable to select hinge configurations which minimize resonance
conditions at lower rotor harmonics throughout the range of rotor speeds.
These conditions also suggest a large value of ) perhaps 0.25, and a

value of ao, of about 0.80. Although it may be impossible to avoid

some resonances involving the third-mode natural frequencies during the
variations of rotor speed, at least they occur at higher harmonics where
the excitation forces are usually small.

For design purposes, primary concern is usually exercised over the
natural frequencies in the neighborhocod of the first two modes. The
problem of calculating the natural frequencies for the rigid-segment
blade is relatively simple, and the question of accounting for the effects
of rotor speed and segment elasticity are then of interest. The effects
of these variables on the natural frequencies of the first two modes are
shown in figure 5 where the ratios of the natural frequencies for the
elastic-segment blade to the frequencies for the rigid-segment blade
(mh)E/(wn)R where n =1 and 2 are presented. The curves show that

no perceptible differences exist for the first mode but that the second-
mode frequencies of the elastic-segment blade may be substantially less
than those for the rigid-segment blade, particularly for high rotor
speeds and for outboard hinge locations for which the ratios of the
lengths of the hinged segments are substantially different from unity.
The effect of inboard hinge location is small. For helicopter applica-
tions and for hinged segments of approximately equal length, the second
natural frequency for the elastic-segment blade is approximately 94 per-
cent of the value predicted for the rigid-segment blade.

The modal coefficients for some typical cases for the elastic-
segment blade are presented in table III, and the four modes are plotted

- oo



3Y

=3 oo

17

for a typical configuration in figure 6. The dashed lines indicate the
deformations of the blade as a result of rotations of the blade segments
about the hinges, and the vertical distances between the solid and dashed
lines indicate the deformations due to elastic bending. If the inboard
hinge is considered as a node, the curves show that the modal number is
equal to the number of nodes. It may also be noted that the higher blade
elastic deformations for the lower modes occur on the outboard segment.

CONCLUDING REMARKS

A method of analysis is presented and applied to the determination
of the natural frequencies and mode shapes of rotor blades having two
flapping hinges. The equations of motion are derived and put in matrix
form for the general case of a rotor blade having any radial variation
of mass, stiffness, and/or hinge locations.

The results of this study indicate that the ratios of the natural
flapwise bending frequencies of the rotor blade to the rotor speed wn/n

may be substantially controlled by proper choice of hinge locations. In
fact one of the significant features of the rigid-segment blade is that
the natural frequency of a given mode is always a constant multiple of
the rotor speed and consequently blade designs are possible which will
eliminate conditions of resonance between the blade natural frequencies
and the frequencles of the harmonic loads as the rotor speed is varied.
The results of the study also show that for the elastic-segment blade
both wl/Q and wg/ﬂ are essentially independent of rotor speed for

realistic hinge configurations. When the outboard hinge was situated
about half way between the inboard hinge and the blade tip, it was
found for the example case treated that the natural frequency for the
second mode of the elastic-segment blade was only about 3 to 6 percent
Jower than the value obtained when the blade segments were assumed to
be rigid.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., September 16, 1960.
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TABLE I

NATURAL FREQUENCIES FOR TWO-HINGE RIGID-SEGMENT BLADE

2
{%1 =my = 0.6 x 1077 391525%]

in.

Q, a; ay @, Wo, ot 2

‘ radians/sec radians/sec radians/sec Q f
8 0.0k 0.20 8.246 31.699 1.0%1 3.962
‘ 16 .0k .20 16.492 63.399 1.031 3,962
‘ 2l .04 .20 2k, 738 95.098 1.031 3,962
! 32 .04 .20 32.984 126.797 1.031 3.962
8 .0k Lo 8.2L46 ol 147 1.031 3.018
16 .ok .ko 16.492 48,294 1.031 3,018
24 .ol ko 2. 738 T2.440 1.031 3.018
’ 3 .0 Lo 33.98% 96.587 1.031 3.018
| 8 .0k .60 8.246 23,052 1.031 2.881
i 16 oS .60 16.492 46,104 1.031 2.881
! ol .0 .60 2. 7%8 69.156 1.0%1 | 2.881
J 32 .0k .60 32.984 92.208 1.031 2.881
8 .0k .80 8.246 26.630 1.031 3,329
16 .0l .80 16.492 53.261 1.031 3.3%29
2k No' .80 2k, 738 79.891 1.031 3.329
{ %2 o .80 32.985 106.522 1.031 3,329
l 8 .10 .30 8.639 29.871 1.080 3,734
16 .10 .30 17.278 59.743 1.080 3,734
2k .10 .30 25.917 89.614 1.080 3,734
32 .10 .30 34,556 119.486 1.080 3,734
8 .10 .50 8.6%9 24,399 1.080 3.050
16 .10 .50 17.278 48.798 1.080 3.050
24 .10 .50 25.917 73.197 1.080 3.050
! 32 .10 .50 34,556 97.595 1.080 3.050
! 8 .10 .70 8.640 2k.619 1.080 3.077
16 .10 .70 17.280 kg.237 1.080 3.077
24 .10 .70 25.920 73.856 1.080 3.077
32 .10 .70 34.559 98.475 1.080 3.077
8 .10 .90 8.6k41 3h 460 1.080 4,308
16 .10 .90 17.282 68.920 1,080 %.3208
2k .10 .90 25.922 103.381 1.080 4,208
32 .10 .90 2h.563 137.841 1.080 4,308
8 . .30 A5 10.237 3.428 1.280 %.553
16 .30 A5 20.475 72.856 1.280 4.553%
2l .30 R 30,712 109.28% 1.280 4.553%
| 32 .30 A5 40,950 145,711 1.280 4,553
8 .30 .60 10.235 28.924 1.279 3.615
16 .30 .60 20.470 57.847 1.279 3.615
24 .30 .60 30.705 86.771 1.279 3.615
‘ 32 .30 .60 40.940 115.695 1.279 3.615
’ 8 .30 .75 10.242 28.186 1.280 3.523
16 .30 .75 20.484 56.372 1.280 3.523
2k .30 .75 30.727 84.558 1.280 3.,523%
32 .30 ) 40.969 112. 744 1.280 3.523
8 .30 .90 10.251 35.733 1.281 L.heT
16 .30 .90 20.503 TL.466 1.281 L. .h67
24 .30 .90 30.754 107.199 1.281 L.h67
32 .30 .90 41.005 142.9%1 1.281 b et

ala—1



1-875

NATURAL FREQUENCIES FOR TWO-HINGE ELASTIC-SEGMENT BLADE

-

2
m, = 0.6 x 1072 EE:EEE_; (ET), = (EI)2 = 3.15 x 106 lb-in.%]

TABLE IT

19

2
in.
& &1 | & Ly “2 o3 P o N e~ s O M
radians/sec radians/sec |radians/sec |radians/sec |radians/sec Q Q Q Q
8 0.0k [0.20 8.24k7 28.%61 67.655 726.714 [1.031.13.545 { 8.457 | 90.839
16 LO4| 20| 16.492 48.499 104,210 759.000 |1.0%31|3.031 | 6.513 | 47.437
24 Ok | 201 24,738 67.157 1h7.281 809.993 11.031{2.7981 6.137 | 33.750
32 04| .20| 32.982 86.174 192.015 876.464 |1.031|2.69% | 6.000 | 27.389
8 o4 ko 8.246 23.675 89.291 177.10% [1.0%3112.959 |11.161 | 22.138
16 .04 | Jho| 16.492 45.470 107.683 211.480 {1.0%1[2.842| 6.730 | 13.217
2k Ok | Jho| 2h.737 65.787 133,164 259.113 |[1.031|2.741 | 5.549 | 10.796
32 .0k | 40| 33.001 85.111 163.384 31%.685 |1.031]|2.660| 5.106 | 9.803
8 .04} .60 8.245 22.618 T76.303 201.607 11.0%31{2.827] 9.538 | 25.201
16 .0k | 60| 16.492 43, 867 100.865 219.776 [1.031|2.742| 6.304 | 13.736
2k .0k} 60| 24,737 64.267 130.049 248.417 [1.031{2.682( 5.419 ! 10.351
32 .0hk| 60| 32.983 84.598 159.958 285.197 |1.0%1|2.64k4 | 4.999 | 8.912
8 04| .80 8.246 24,968 520.219 714,500 |1.031{3.121 (65.027 | 89.313
16 Lob! .80| 16.494 45,577 801.762 721.896 [1.031(2.849(50.110 | 45.118
24 04| .80 24.737 65.263 |1,132.826 734.083 {1.031|2.719 [47.201 | 30.587
32 04| 801 32.983 85.12k |1,k76.111 750.866 |1.031[2.660 |46.128 | 23.465
8 10| .30 8.639 28.200 78.178 485.783 {1.080|3.525| 9.772 | 60.723
16 .10| .30] 17.277 50.773 107.941 518.342 |1.080{3.173| 6.746 | 32.396
24 10| .30 25.915 70.845 145.945 568.578 {1.080(2.952| 6.081 | 23.691
32 L1010 .30] 34.553 90.731 186.71% 632.357 [1.080{2.835] 5.835 | 19.761
8 .10| .50 8.639 24,092 108.780 166.941 |1.080|3.011(13.597 | 20.868
16 .10} 50| 17.277 46.906 125,110 199.154 |1.080|2.9%32| 7.819 | 12.447
24 .10§ .50| 25.915 68.528 147.987 244,210 |1.080|2.855( 6.166 | 10.176
32 .10 .50) 34.553 89.503 175.003 296.321 |1.080({2.797{ 5.469 | 9.260
8 .10] .70 8.639 24,010 71.007 337.881 11.080|3.001| 8.876| k2.235
16 .10{ .70{ 17.278 46,137 97.008 350.3%28 {1.080{2.884| 6.063| 21.895
2l 10| .70l 25.915 67.3%92 128.930 370.470 [1.080|2.808] 5.372| 15.436
32 .10 .70 34.553 88.477 162.450 397.487 {1.080]2.765| 5.077 | 12.421
8 .10| .90 8.638 30.696 51.441 2,730.348 |1.080|3.837| 6.430 |341.293
16 .10 .90 17.279 51.013 86.108 2,733.814 |1.080|3.188| 5.382 (170.863
24 .10| .90 25.917 70.527 125.512 2,739.581 |1.080[2.939| 5.230 [114.150
%2 .10) 90| 3h.s57 90.727 165.778 2,747.6% 11.080]2.835] 5.181) 85.864
8 .30| 45| 10.239 35.133 118.767 849,358 |1.280(%.392 {14 .846 |106.170
16 L300 450 20.469 64.569 147.778 878.903 |1.279|4.0%6 | 9.236 | 54.931
2k .30| 451 30.696 89.258 189.029 926.099 |1.279|3.719{ 7.876| 38.588
32 .30| 45| b40.924 112,396 235.969 988.473 |1.279{3.512( 7.374 | 30.890
8 .30| 60| 10.234 28,722 17%.905 271.864 {1.279]3.590(21.738 | 33.983
16 .30| .60| 20.466 56.438 188.2k2 302,162 |1.279]3.527{11.765 | 18.885
24 .30| .60] 30.695 82.833 209.94k4 347.21% 11,279 3-451| 8.748| 14.k6T
32 .30| .60| Lk0.922 108.147 2%7.13%8 402.202 [1.279/3.380( T.411| 12.569
8 L300 .75 10.238 27.886 114.902 489.326 [1.277]|3.486 |14.363 | 61.166
16 L300 75| 20.471 5k.527 139.417 500.446 [1.279]3.408| 8.71k | 31.278
2k .30] .75 30.700 80.095 172.609 518.693 | 1.2791 3.337 7.192| 21.612
32 .30 .75 40.925 105.160 209.748 543,646 [1.279]3.286 6.555| 16.989
8 .30| .90| 10.268 34 . 204 76.654 2,769.464 [1.284|4.287| 9.582|346.183
16 .30| .90| 20.483 62.2%5 105.328 2,773.048 | 1.280| 3.890] 6.583 [173.315
2 .30{ .90| 30.708 86.258 143,921 2,779.010 [1.279| 3.594| 5.997(115.793
32 .30| .90/ 40.929 109.865 185.829 2,787.339 | 1.279| 3.433| 5.807| 87.104
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MODAL COEFFICIENTS FOR TWO-HINGE ELASTIC-SEGMENT BLADE

TABLE IIT

q 91 by bo
a1 ap Wy n @2 R(pg R(pg
0.0k [0.40 | 8 8.246 | 1| 40.588 | -0.005 | -0.011
04| 40| 8 23.675| 2 -.451 | -.00%3| -.016
Ok | 40| 8| 89.291| 3 [-12.807 | -2.327 | 14.819
O | 4O | 8 |1iT7.04 | 4 -.752 Lo2 272
.ob | LO |16 | 16.492| 1| 48.194 | -.018 | -.031
Ok | 40 |16 | 45.470} 2 -lo2 | -.007| -.048
04 | kO |16 |107.683) 3| -3.277| -.644 | 3.%96
LO4 | .40 |16 |211.480| & -.Th7 .381 .269
Ok | Jho |2k | 24,737 1| 46.114 | -.010| -.047
0 | 4o |24 | 65.787| 2 -.398 1| -.027] -.076
O | ko |24 133,164 3| -2.145 | -.455 | 2.041
O | JLo (24 [259.113| 4 -.T43 . 365 267
Ol 4o (32| 33,001 1| l.7h7| -.031| -.052
O | b0 (%2 | 85.111) 2 -.381| -.012| -.096
Ok | 4O |32 |163.384%| 3| -1.786 | -.400 ]| -1.611
Ok | .40 |32 |313.685| 4 -.7h1 -355 . 266
1 50 | 32 | 34.553%| 1 | -32.606 076 | -.085
1 .50 | 32 | 89.50%| 2 -.324 | -.017| -.060
.1 .50 | 32 {175.00%| 3 .380 .383 | -.983
.1 .50 | 32 |296.%21 | 4 -.T46 .332 .352
.3 60 | 32 | 40.922| 1 7.615| -.027| -.023%
.3 .60 | 32 |108.147 2 -.357| -.009| -.038
.3 .60 | 32 [237.138| 3 .700 357 | -1.063
.3 .60 | 32 [402.202( & -.75k4 .269 .261

-3 et
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1.Or _
First mode

1.O
Second mode

0|~

Figure 3.- Representative mode shapes for two-hinge, rigid-segment blade.
8.1 = 0.0ll-; &2 = O.LLO.
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Z 0
-1 L A | First mode |
z
-1 L \ A Second mode |
y4
- L | | Third mode |
b r
Z 0
- | , Fourth mode |
0 2 4 6 8 1.0

0|~

Figure 6.- Representative mode shapes for two-hinge elastic-segment
blade. a; = 0.04; a = 10.

NASA - Langley Field, Va. 1875
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